Using Genetic Algorithms for Large Scale Optimizationof Assignment, Planning and Rescheduling Problems
نویسنده
چکیده
There has always been a need to solve real-life large-scale problems, such as efficiently allocating limited resources, and other complex and conflicting situations related to combinatorial optimization genre. A class of combinatorial optimization problems is NP-hard and, among many well-known, several of them are assignment, planning and rescheduling problems. Assignment problems can deal with optimal assignment of teams of collaborating agents; planning problems can be effects-based planning that search for promising plans to get desired end states with minimal cost; rescheduling problems can be multi-criteria optimization of rescheduling resources that modify existing original schedule. These large scale optimization problems are complex with intractable and highly complex search spaces. Currently, there are no known algorithms with polynomial time complexity, which can solve these problems. Genetic Algorithms have been successfully applied to solve many complex optimization problems but not to the specific problems mentioned above. The aim of the research, presented in this thesis, is to use Genetic Algorithms for large scale optimization of assignment, planning and rescheduling problems. More specifically, the contributions of the thesis are to: (i) adapt existing and develop new efficient Genetic Algorithms to solve large scale assignment problems, and (ii) adapt existing Genetic Algorithms to solve large scale effects-based planning, and multi-objective rescheduling optimization problems. In case of assignment, we solve a team assignment problem and investigate specific regions in a solution space for assignment problems with huge search spaces. For the team assignment, an existing Genetic Algorithm is adapted and applied for optimal assignment of tasks to teams of collaborating agents. The algorithm is scalable, stable, robust and produces a near optimal solution. The results of the team assignment problem show that the existing Genetic Algorithms are not efficient for optimal assignment of tasks to teams of agents. Hence, to solve larger instances of the problem efficiently, new Genetic Algorithms are developed with emphasis on the construction of crossover operators. Since teams assignment can be multi-criteria, a multi-objective model is constructed and two widely used multi-objective evolutionary algorithms are applied. Further, for the assignment problems with huge search spaces, an existing Genetic Algorithm is adapted to extract possible combinations of input parameters from a specified solution space region. To solve the large scale effects-based planning, a multi-objective optimization problem is formulated for the evaluation of operational plans and a multi-objective Genetic Algorithm is adapted and applied to the problem. The results show that the suggested algorithm is much more efficient than A*. For the rescheduling problem, a multi-objective optimization model for rescheduling of resources is proposed and a multi-objective Genetic Algorithm is adapted and applied to obtain the Pareto-optimal solutions. The research presented in this thesis confirms that Genetic Algorithms can be used for large scale assignment, planning and rescheduling problems since they have shown to be suitable in solving these problems efficiently.
منابع مشابه
Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic and Genetic Algorithm
In this paper, we study the re-entrant no-wait flexible flowshop scheduling problem with makespan minimization objective and then consider two parallel machines for each stage. The main characteristic of a re-entrant environment is that at least one job is likely to visit certain stages more than once during the process. The no-wait property describes a situation in which every job has its own ...
متن کاملA genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem
Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one o...
متن کاملScheduling Problem of Virtual Cellular Manufacturing Systems (VCMS); Using Simulated Annealing and Genetic Algorithm based Heuristics
In this paper, we present a simulated annealing (SA) and a genetic algorithm (GA) based on heuristics for scheduling problem of jobs in virtual cellular manufacturing systems. A virtual manufacturing cell (VMC) is a group of resources that is dedicated to the manufacturing of a part family. Although this grouping is not reflected in the physical structure of the manufacturing system, but machin...
متن کاملScheduling Problem of Virtual Cellular Manufacturing Systems (VCMS); Using Simulated Annealing and Genetic Algorithm based Heuristics
In this paper, we present a simulated annealing (SA) and a genetic algorithm (GA) based on heuristics for scheduling problem of jobs in virtual cellular manufacturing systems. A virtual manufacturing cell (VMC) is a group of resources that is dedicated to the manufacturing of a part family. Although this grouping is not reflected in the physical structure of the manufacturing system, but machin...
متن کاملAddressing a fixed charge transportation problem with multi-route and different capacities by novel hybrid meta-heuristics
In most real world application and problems, a homogeneous product is carried from an origin to a destination by using different transportation modes (e.g., road, air, rail and water). This paper investigates a fixed charge transportation problem (FCTP), in which there are different routes with different capacities between suppliers and customers. To solve such a NP-hard problem, four meta-heur...
متن کامل